

This book and the information contained herein are copyrighted by Brent Milne. No part of
this publication may be reproduced, distributed, or transmitted in any form or by any means,
including photocopying, recording, or other electronic or mechanical methods, without the
prior written permission of the publisher, except in the case of brief quotations embodied in
critical reviews and certain other noncommercial uses permitted by copyright law.

The information contained in this book is for informational purposes only. While the author
has made every effort to ensure the accuracy of the information, the content should not be
considered professional advice. The author and publisher assume no responsibility for errors
or omissions or damages resulting from the use of the information contained herein. This
book explores the use of AI tools for code generation. The author has made every effort to
provide accurate and up-to-date information. However, AI technology is constantly evolving,
and the results generated by AI tools can vary. The author and publisher are not responsible
for the accuracy, reliability, or suitability of AI-generated code, and readers are advised to
exercise caution and critical judgment when using such tools.

Copyright © 2025 Brent Milne.

Disclaimer:

Just as Leo Brodie's Starting Forth introduced a generation of programmers to the elegant
simplicity and power of the Forth language, this book aims to guide you through a new
frontier: the world of AI-assisted code generation. In an era where artificial intelligence is
rapidly transforming every industry, software development is no exception. AI tools are no
longer a futuristic concept; they are here, and they are changing how we write, debug, and
even think about code.

This book is designed for anyone who wants to harness the immense power of AI to become
a more efficient, productive, and innovative programmer. Whether you're a complete
beginner taking your first steps into coding or an experienced developer looking to integrate
cutting-edge tools into your workflow, you'll find a structured, hands-on approach to
mastering the art of prompting AI for code.

At its core, AI-assisted code generation involves utilising artificial intelligence models,
particularly large language models (LLMs), to assist developers in writing software. Think of
these AI tools as intelligent assistants that can understand your natural language instructions
(prompts) and translate them into functional code. They can:

Generate new code: From simple functions to complex algorithms, based on your
descriptions.
Complete code: Suggesting the following lines of code as you type, much like an
advanced autocomplete.
Refactor and optimise code: Improving existing code for readability, performance, or
adherence to best practices.
Debug and fix errors: Identifying issues in your code and suggesting corrections.
Translate code: Converting code from one programming language to another.
Generate documentation: Creating comments, docstrings, and even complete
documentation for your codebase.

Chapter 1: The New Frontier - AI and Code
Generation
Welcome to the New Frontier of Coding

What is AI-Assisted Code Generation?

AI models power these capabilities, which are trained on vast datasets of code and text,
allowing them to learn patterns, syntax, and standard programming paradigms across
multiple languages. When you provide a prompt, the AI leverages this learned knowledge to
predict and generate relevant code.

The integration of AI into the coding workflow offers several compelling advantages:

1. Increased Productivity: AI can automate repetitive tasks, generate boilerplate code,
and quickly provide solutions to common problems, freeing up developers to focus on
more complex and creative challenges.

2. Faster Prototyping: Rapidly generate initial code for new features or projects,
accelerating the prototyping phase and enabling quicker iteration.

3. Reduced Errors: AI tools can detect syntax errors, logical flaws, and even security
vulnerabilities early in the development process, resulting in more robust and reliable
software.

4. Learning and Exploration: For beginners, AI can serve as a tutor, explaining code,
suggesting alternative approaches, and providing examples. For experienced
developers, it can help explore new libraries, frameworks, or programming languages
more quickly.

5. Consistency and Best Practices: AI can be prompted to adhere to specific coding
standards, style guides, and architectural patterns, promoting consistency across a
codebase.

6. Bridging Knowledge Gaps: When working with unfamiliar APIs or complex domains,
AI can provide relevant code snippets and explanations, reducing the time spent on
research.

While incredibly powerful, AI-assisted code generation is not a magic bullet. It's crucial to
understand its limitations:

1. AI is a Tool, Not a Replacement: AI assists, it does not replace the developer. Human
oversight, critical thinking, and understanding of the generated code are paramount.
You are still the architect and the quality assurance.

2. Context is Key: The quality of AI-generated code heavily depends on the clarity and
completeness of your prompts. Ambiguous or insufficient prompts will lead to
suboptimal or incorrect results.

3. Potential for Errors: AI can generate incorrect, inefficient, or insecure code.
Continually review, test, and validate AI-generated code before integrating it into your

The Benefits of AI-Assisted Coding

Limitations and Considerations

projects.
4. Security and Privacy: Be mindful of the data you share with AI tools, especially if

working with proprietary or sensitive code. Some tools offer local execution options for
enhanced privacy and security.

5. Bias and Hallucinations: AI models can inherit biases from their training data, and
they can sometimes "hallucinate" or confidently present incorrect information as fact.

6. Evolving Landscape: The field of AI is evolving at a breakneck pace. Tools and best
practices will continue to grow, requiring continuous learning and adaptation.

Just as Starting Forth taught people to think in terms of "words" and how to combine them to
build complex programs, this book will teach you to think in terms of "prompts" – the precise
instructions you give to an AI. The quality of the code you get from an AI is directly
proportional to the quality of the prompt you provide.

This book will guide you through:

Understanding AI's capabilities: What can AI realistically do for you in coding?
Crafting effective prompts: Learning the syntax, structure, and strategies for clear,
concise, and comprehensive instructions.
Iterating and refining: How to work with AI in a conversational manner to improve
generated code.
Integrating AI into your workflow: Practical ways to use AI tools in your daily
development tasks.
Best practices and ethical considerations: Ensuring you use AI responsibly and
effectively.

We will explore these concepts using JavaScript as our primary language for examples.
JavaScript's ubiquity, accessibility, and versatility make it an ideal choice for demonstrating
AI-assisted code generation across various applications, from web development to
standalone tools.

Starting Forth was revolutionary in its approach to teaching programming. It broke down
complex concepts into digestible pieces, used explicit language, and reinforced learning with
practical examples and even a touch of humour through its iconic illustrations. We aim to
capture that spirit here.

Why This Book? The Importance of Effective
Prompting

A Nod to "Starting Forth"

Each chapter will introduce new prompting techniques and coding concepts, building upon
the knowledge gained in previous chapters. You'll find clear explanations, hands-on
examples, and exercises designed to solidify your understanding. Just as Forth encouraged
a disciplined yet creative approach to programming, so too will this book promote a
thoughtful and iterative approach to AI prompting.

Welcome aboard. Let's start prompting for code!

References:

Brodie, Leo. Starting Forth. Prentice-Hall, 1981. (Available online:
http://www.forth.com/starting-forth/)
Qodo.ai. "15 Best AI Coding Assistant Tools in 2025." https://www.qodo.ai/blog/best-ai-
coding-assistant-tools/
Pieces.app. "10 Best AI code generators in 2025 [Free & Paid]."
https://pieces.app/blog/9-best-ai-code-generation-tools

http://www.forth.com/starting-forth/
https://www.qodo.ai/blog/best-ai-coding-assistant-tools/
https://pieces.app/blog/9-best-ai-code-generation-tools

Before we dive into the exciting world of AI-assisted code generation, we need to establish
our foundational programming language. Just as Starting Forth focused on Forth, this book
will centre on JavaScript. This means plain JavaScript, without any additional libraries or
frameworks, such as jQuery, React, or Angular. This choice is deliberate and offers several
key advantages for beginners and for demonstrating AI prompting:

Ubiquity: JavaScript is the language of the web. Every modern web browser has a
built-in JavaScript engine, meaning you can write and run JavaScript code directly in
your browser without needing to install complex development environments.
Accessibility: It's free to use and learn. All you need is a text editor and a web browser,
both of which are readily available on almost any computer.
Versatility: While primarily known for web development, JavaScript, especially with
Node.js (which we'll explore later), can be used for server-side programming, desktop
applications, mobile apps, and even embedded systems. This broad applicability makes
it an excellent choice for demonstrating the power of AI-generated code across different
domains.
Readability for AI: The vast amount of JavaScript code available online makes it a rich
training ground for AI models. This means AI tools are generally very good at
understanding JavaScript prompts and generating accurate, idiomatic JavaScript code.
Foundation for Future Learning: Mastering JavaScript provides a strong foundation
for learning more advanced JavaScript libraries and frameworks later on. It teaches you
the core concepts without the added complexity of external tools.

Throughout this book, we'll be interacting with AI coding tools. These are software
applications or services that use artificial intelligence to assist developers in various coding
tasks. They come in many forms, but generally fall into these categories:

Chapter 2: Setting Up Your AI Coding
Workbench
Choosing Your Language: JavaScript

Understanding AI Coding Tools: Your Intelligent
Assistants

1. Code Autocompletion and Suggestion: These tools integrate directly into your code
editor (like Visual Studio Code, which we'll set up in the next chapter) and provide real-
time suggestions as you type. Think of them as a super-powered autocomplete that
understands context and can suggest entire lines or blocks of code.

Examples: GitHub Copilot, Codeium, Tabnine.

2. Code Generation from Natural Language: This is where you describe what you want
in plain English (or another human language), and the AI generates the corresponding
code. This is the primary focus of our book.

Examples: ChatGPT, Gemini, specialised code generation platforms.

3. Code Refactoring and Optimisation: These tools can analyse your existing code and
suggest improvements for readability, performance, and adherence to best practices.

4. Debugging and Error Fixing: Some AI tools can help identify bugs in your code and
even suggest fixes.

5. Code Translation: AI can translate code from one programming language to another.

6. Documentation Generation: AI can generate comments, docstrings, and complete
documentation for your codebase.

Most of these tools are powered by large language models (LLMs) that have been trained on
massive datasets of text and code. When you provide a prompt, the AI uses its training to
predict the most likely and relevant code or text to generate. It's like having an incredibly
knowledgeable coding assistant at your fingertips, ready to help you write code, explain
concepts, or even brainstorm solutions.

It's crucial to understand that AI coding tools are assistants, not replacements for human
developers. Your role is to:

Define the Problem: Clearly articulate what you want the code to do.
Craft Effective Prompts: Learn how to communicate your needs to the AI in a way it
understands best.
Review and Verify: Always examine the AI-generated code for correctness, efficiency,
and security. AI can make mistakes or generate suboptimal solutions.
Integrate and Refine: Incorporate the AI-generated code into your project and refine it
as needed.

How They Work (Simplified)

Your Role in the AI-Assisted Workflow

Debug and Test: Even with AI assistance, thorough testing and debugging are
essential.

Think of it as a collaboration. You provide the high-level direction and quality control, and the
AI handles the heavy lifting of code generation. This partnership allows you to be
significantly more productive and tackle more ambitious projects.

Let's start with the simplest possible interaction: asking the AI to generate a classic "Hello,
World!" program in JavaScript. This will demonstrate the basic flow of prompting.

Prompt:

AI-Generated Code (Expected):

console.log("Hello, World!");

Analysis: The AI correctly interprets your request and provides the standard JavaScript
command for printing to the console. This is the fundamental interaction we'll build upon
throughout the book.

In the next chapter, we'll set up your development environment, focusing on Visual Studio
Code, which will be your primary tool for writing and running JavaScript code, as well as
interacting with AI assistants.

References:

MDN Web Docs: JavaScript
Node.js Official Website
What is Vanilla JavaScript?

Write a simple JavaScript code snippet that prints "Hello, World!" to the console.

Your First AI Interaction: The "Hello, World!" of
Prompting

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://nodejs.org/
https://www.freecodecamp.org/news/what-is-vanilla-javascript/

Just as a craftsman needs a well-equipped workshop, a programmer needs a robust and
efficient development environment. For JavaScript development, especially when working
with AI-assisted code generation, Visual Studio Code (VS Code) is an excellent choice. It's
free, open-source, highly customisable, and packed with features that will make your coding
journey smoother. This chapter will guide you through setting up VS Code and its essential
extensions, transforming your computer into a powerful AI coding workbench.

VS Code has become the go-to code editor for millions of developers for several reasons:

Lightweight and Fast: It starts quickly and runs efficiently, even on less powerful
machines.
Free and Open Source: Accessible to everyone, with a large and active community.
Cross-Platform: Available on Windows, macOS, and Linux.
Extensible: A vast marketplace of extensions allows you to add features for almost any
programming language or task.
Built-in Features: Includes integrated terminal, Git control, and a powerful debugger.
IntelliSense: Provides intelligent completions based on variable types, function
definitions, and imported modules, making coding faster and reducing errors.

1. Go to the Official Website: Open your web browser and navigate to
code.visualstudio.com.

2. Download: Click the prominent "Download" button for your operating system (Windows,

Chapter 3: Setting Up Your AI Coding
Workbench
Your Digital Workshop: Visual Studio Code and
Beyond

Why Visual Studio Code?

Step-by-Step Setup: Getting Started with VS Code

Step 1: Download and Install VS Code

https://code.visualstudio.com/

macOS, or Linux).
3. Install: Once the download is complete, run the installer. Follow the on-screen prompts.

For most users, the default options are fine. On macOS, you might just drag the
application to your Applications folder.

Extensions add powerful capabilities to VS Code. Here are a few crucial ones for JavaScript
development and AI-assisted coding:

1. Open the Extensions View: In VS Code, click on the Extensions icon in the Activity
Bar on the side (it looks like four squares, one of which is detached) or press
Ctrl+Shift+X (Windows/Linux) or Cmd+Shift+X (macOS).

2. Search and Install: In the search bar at the top of the Extensions view, type the name
of the extension and click "Install" next to the correct one.

Prettier - Code formatter: This extension automatically formats your code to
ensure consistency and readability. It saves you time and helps maintain a clean
codebase.

Why it helps: AI-generated code might not always follow your preferred
formatting. Prettier ensures everything looks neat.

ESLint: A linter that analyses your code for potential errors, bugs, stylistic issues,
and suspicious constructs. It helps you write higher-quality JavaScript.

Why it helps: Catches common JavaScript mistakes and enforces best practices,
complementing AI-generated code by ensuring it meets quality standards.

Live Server: Launches a local development server with a live reload feature for
static and dynamic pages. Any changes you make to your HTML, CSS, or
JavaScript files will automatically update in your browser.

Why it helps: Speeds up your development workflow by showing changes
instantly without manual refreshing.

Node Essentials: Installs Node.js in your development environment

Why it helps You can write and test Node.js files locally.

GitHub Copilot (or similar AI coding assistant): While this book teaches you
how to prompt, having an AI coding assistant integrated directly into your editor
can provide real-time suggestions and completions. (Note: Some AI coding
assistants may require a subscription or account setup.)

Step 2: Install Essential Extensions

Why it helps: Provides immediate feedback and code suggestions as you
type, making the prompting process more interactive.

VS Code is highly configurable. You can access settings by going to
File > Preferences > Settings (Windows/Linux) or
Code > Settings > Settings (macOS) or by pressing Ctrl+, (Windows/Linux)

or Cmd+, (macOS).

Default Formatter: Set Prettier as your default formatter.

1. Search for "Default Formatter".
2. Select "Prettier - Code formatter" from the dropdown.
3. Enable "Format On Save" by searching for it and checking the box.

Auto Save: Ensure your work is saved automatically.

1. Search for "Auto Save".
2. Select "onFocusChange" or "afterDelay" from the dropdown.

Let's create a simple JavaScript file to test your setup.

1. Create a New Folder: On your desktop or in your documents, create a new folder
named my-first-js-project .

2. Open Folder in VS Code: In VS Code, go to File > Open Folder... and select
the my-first-js-project folder you just created.

3. Create a New File: In the VS Code Explorer (the left sidebar), click the "New File" icon
(a blank page with a plus sign) and name the file app.js .

4. Write Some Code: Type the following JavaScript code into app.js :

// app.js
console.log("Hello, AI-Assisted Coding!");

function greet(name) {
 return `Hello, ${name}!`;
}

const message = greet("Developer");
console.log(message);

5. Run in Terminal:

Step 3: Configure VS Code (Optional but Recommended)

Your First JavaScript File in VS Code

Open the integrated terminal in VS Code by going to
Terminal > New Terminal or pressing Ctrl+ (backtick).

In the terminal, type node app.js and press Enter. (You'll need Node.js
installed for this, which we'll cover in a later chapter, but for now, you can also open
the HTML file in a browser if you link this JS file to it.)
You should see the output:

Hello, AI-Assisted Coding!
Hello, Developer!

With Visual Studio Code set up and essential extensions installed, you now have a robust
and comfortable environment for writing, testing, and debugging your JavaScript code. This
workbench will be your primary tool as you continue to explore the exciting world of AI-
assisted development. In the next chapter, we will dive deeper into the language of AI itself:
prompt engineering.

References:

Visual Studio Code Official Website
VS Code Docs: User Guide
Prettier Extension
ESLint Extension
Live Server Extension

Conclusion: Ready for Action

https://code.visualstudio.com/
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

Just as Forth relies on a precise vocabulary of "words" to build programs, communicating
effectively with AI for code generation requires a precise "language" of its own: prompt
engineering. This is the art and science of crafting inputs (prompts) that elicit the desired
output from an AI model. A well-engineered prompt can transform a vague idea into
functional code, while a poorly designed one can lead to irrelevant, incorrect, or incomplete
results.

This chapter introduces the fundamental principles of prompt engineering for code
generation. We will learn how to structure your prompts, provide necessary context, and
guide the AI towards generating accurate and valid JavaScript code.

Think of your AI assistant as an incredibly knowledgeable but literal intern. It will do exactly
what you tell it, but it won't necessarily infer what you meant if your instructions are unclear.
Here are the core principles:

1. Be Clear and Specific: Avoid ambiguity. State exactly what you want the AI to do, what
inputs it will receive, and what output you expect.

2. Provide Context: Provide the AI with sufficient background information. What is the
purpose of the code? What problem is it solving? What existing code does it need to
integrate with?

3. Define Constraints and Requirements: Specify any limitations, such as the
programming language, specific libraries to use or avoid, performance considerations,
or coding style guidelines.

4. Break Down Complex Tasks: For larger problems, break them into smaller,
manageable steps. You can prompt the AI for each step individually or guide it through a
sequence of operations.

5. Iterate and Refine: Prompting is rarely a one-shot process. Expect to refine your

Chapter 4: The Language of AI - Crafting
Effective Prompts
Speaking to the Machine: The Art of Prompt
Engineering

Core Principles of Effective Prompts

prompts based on the AI's initial responses. Think of it as a conversation.

A good prompt for code generation typically includes several key components:

Role/Persona (Optional but Recommended): Tell the AI what role it should adopt
(e.g., "Act as a senior JavaScript developer," "You are a security expert"). This can
influence the style and focus of its response.
Task/Goal: Clearly state the objective. What kind of code do you want? (e.g., "Write a
function," "Generate an HTML structure," "Create a CSS style").
Input Description: Describe any data or parameters the code will receive. Provide
examples if possible.
Output Description: Specify the expected format and content of the output. Do you
need a function, a class, a whole file, or just a snippet? What should the return value
be?
Constraints/Conditions: Any rules, limitations, or specific requirements. (e.g., "Use
JavaScript," "Do not use jQuery," "Ensure it's responsive," "Handle errors gracefully").
Examples (Few-Shot Prompting): Providing examples of desired input-output pairs
can significantly improve the quality of the AI's response, especially for complex
transformations or specific formatting needs.

Let's apply these principles with some simple JavaScript examples.

Goal: A function that adds two numbers.

Prompt:

AI-Generated Code (Expected):

function addNumbers(a, b) {
 return a + b;
}

Analysis: This is a straightforward request. The AI correctly interprets your request and
provides the standard JavaScript command for printing to the console.

Write a JavaScript function called `addNumbers` that takes two arguments, `a` and `b`, and returns their sum.

Anatomy of a Good Code Generation Prompt

Basic Prompting Examples

Example 1: Generating a Simple Function

Goal: The addNumbers function should only add if the inputs are numbers.

Prompt:

AI-Generated Code (Expected):

function addNumbers(a, b) {
 if (typeof a !== 'number' || typeof b !== 'number') {
 return "Invalid input: Both arguments must be numbers.";
 }
 return a + b;
}

Analysis: By adding an explicit constraint
(check if both a and b are numbers) and specifying the error message, the
AI incorporates the validation logic. This demonstrates how iterative prompting can
refine code.

Goal: A function to find the maximum number in an array.

Prompt:

Write a JavaScript function `findMax` that takes an array of numbers as
input and returns the largest number in the array. Assume the input
array will always contain numbers.

**AI-Generated Code (Expected):

Modify the `addNumbers` JavaScript function. It should now check if both
`a` and `b` are numbers. If they are not, it should return an error
message, such as "Invalid input: Both arguments must be numbers."

Example 2: Adding Input Validation

Example 3: Generating an Array Operation

Analysis: The AI provides a correct implementation. Notice it also implicitly handles the
edge case of an empty array, which is good practice.

AI models perform better when they understand the context in which the code will be used.
This helps them generate more relevant and integrated solutions.

Goal: Add a new list item to an existing HTML unordered list.

Prompt:

AI-Generated Code (Expected):

function addListItem(itemText) {
 const ul = document.getElementById("myList");
 if (ul) {
 const li = document.createElement("li");
 li.textContent = itemText;
 ul.appendChild(li);
 } else {
 console.error("Element with ID 'myList' not found.");
 }
}

Analysis: By knowing the ID of the HTML element, the AI correctly uses

function findMax(numbers) {
 if (numbers.length === 0) {
 return undefined; // Or throw an error, depending on desired behaviour for empty array
 }
 let max = numbers[0];
 for (let i = 1; i < numbers.length; i++) {
 if (numbers[i] > max) {
 max = numbers[i];
 }
 }
 return max;
}

I have an HTML page with an unordered list that has the ID "myList".
Write a JavaScript function `addListItem` that takes a string `itemText`
and adds a new list item () with that text to the "myList" list.

Providing Context: The Key to Relevant Code

Example 4: Context for HTML Manipulation

document.getElementById and appendChild to manipulate the DOM
(Document Object Model). It also includes basic error handling if the element isn't found.

Explicitly stating constraints helps the AI narrow down its options and produce code that
meets your specific needs.

Goal: A function to sum large numbers efficiently.

Prompt:

AI-Generated Code (Expected):

Analysis: The AI provides a simple for loop, which is generally the most performant
way to sum numbers in a large array in JavaScript, demonstrating its understanding of
the "optimise for performance" constraint. It might also offer reduce as an
alternative, highlighting trade-offs.

Write a JavaScript function `sumLargeNumbers` that takes an array of
numbers. This array can be very large. Optimise the function for optimal
performance, avoiding unnecessary iterations and complex operations.
Return the total sum.

function sumLargeNumbers(numbers) {
 let sum = 0;
 for (let i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 }
 return sum;
}

// Or, for a more modern approach that might be slightly less performant
for *extremely* large arrays
// but is often more readable:
// function sumLargeNumbers(numbers) {
// return numbers.reduce((accumulator, currentValue) => accumulator +
currentValue, 0);
// }

Defining Constraints and Requirements

Example 5: Performance Constraint

Conclusion: Your First Steps in Prompt

You've now taken your first steps into the crucial skill of prompt engineering. By being clear,
providing context, and defining constraints, you can significantly improve the quality and
relevance of the code generated by AI. Remember, the AI is a powerful tool, but it's your
ability to communicate effectively with it that will truly unlock its potential. In the next chapter,
we'll move from simple functions to building more complex structures.

References:

Prompt Engineering Guide: Introduction
OpenAI: Best practices for prompt engineering with OpenAI API
MDN Web Docs: Working with objects

Engineering

https://www.promptingguide.ai/introduction
https://platform.openai.com/docs/guides/prompt-engineering/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

In Starting Forth, people learned about "words" – the fundamental building blocks of the
Forth language. In JavaScript, our primary building blocks are variables and functions.
Variables are like containers that hold information, and functions are reusable blocks of code
that perform specific tasks. Understanding how to prompt AI to generate these effectively is
your next crucial step.

This chapter will guide you through prompting AI to create variables, define functions, and
understand their fundamental interactions. We will start simple and gradually build up to
more complex function structures.

Variables are essential for storing data that your program needs to work with. In JavaScript,
you declare variables using let , const , or (less commonly now) var .

let : Used for variables whose values might change.
const : Used for variables whose values will not change (constants).
var : An older keyword, generally avoided in modern JavaScript due to its scope

rules.

Goal: Declare two variables to store a user's name and age.

Prompt:

AI-Generated Code (Expected):

Declare two JavaScript variables: one named `userName` to store a string
value "Alice", and another named `userAge` to store a number value 30.
Use modern JavaScript syntax.

Chapter 5: From Zero to Function -
Building Blocks of Code
The Smallest Units: Functions and Variables

Variables: Storing Information

Example 1: Declaring Variables

const userName = "Alice";
let userAge = 30;

Analysis: The AI correctly uses const for a value that is unlikely to change (name)
and let for one that might (age), demonstrating an understanding of modern
JavaScript conventions.

Goal: Calculate the area of a rectangle using variables for length and width.

Prompt:

Write JavaScript code to declare two variables, `length` set to 10 and
`width` set to 5. Then, calculate their product and store it in a new
variable called `area`. Finally, print the `area` to the console.

AI-Generated Code (Expected):

const length = 10;
const width = 5;
const area = length * width;
console.log("The area is: " + area);
// Expected output: The area is: 50

Analysis: The AI correctly performs arithmetic operations and demonstrates how to
output results, a fundamental programming concept.

Functions are the workhorses of JavaScript. They enable you to encapsulate a specific task
into a reusable block, making your code more organised, efficient, and easier to debug.
Functions can take inputs (arguments) and produce outputs (return values).

Goal: Create a function that greets a user by name.

Prompt:

Write a JavaScript function named `greetUser` that takes one argument,
`name`, and returns a string like "Hello, [name]!".

Example 2: Performing Operations with Variables

Functions: Reusable Blocks of Code

Example 3: A Simple Function

AI-Generated Code (Expected):

Analysis: The AI correctly defines a function, uses a parameter, and returns a
formatted string. The use of template literals (`) is a modern JavaScript feature that
makes string concatenation cleaner.

Goal: A function to calculate the average of three numbers.

Prompt:

Create a JavaScript function called `calculateAverage` that accepts
three numbers as arguments (`num1`, `num2`, `num3`) and returns their
average.

AI-Generated Code (Expected):

function calculateAverage(num1, num2, num3) {
 return (num1 + num2 + num3) / 3;
}

// Example usage:
// console.log(calculateAverage(10, 20, 30)); // Expected output: 20

Analysis: This demonstrates how functions can handle multiple inputs and perform
calculations based on them.

Just as Forth words can be combined to create new words, JavaScript functions can call
other functions. This is a powerful way to build complex logic from simpler, reusable parts.

Goal: Calculate the total cost, including tax, using separate functions for subtotal and tax
calculation.

Prompt:

function greetUser(name) {
 return `Hello, ${name}!`; // Using template literals for easy string formatting
}

// Example usage:
// console.log(greetUser("Bob")); // Expected output: Hello, Bob!

Example 4: Function with Multiple Arguments

Example 5: Functions Calling Other Functions

AI-Generated Code (Expected):

function calculateSubtotal(prices) {
 let subtotal = 0;
 for (let i = 0; i < prices.length; i++) {
 subtotal += prices[i];
 }
 return subtotal;
}

function calculateTax(subtotal, taxRate) {
 return subtotal * taxRate;
}

function calculateTotalCost(prices, taxRate) {
 const subtotal = calculateSubtotal(prices);
 const taxAmount = calculateTax(subtotal, taxRate);
 return subtotal + taxAmount;
}

// Example usage:
// const itemPrices = [100, 50, 25];
// const salesTaxRate = 0.08; // 8%
// console.log(calculateTotalCost(itemPrices, salesTaxRate));
// Expected output: (100+50+25) + (100+50+25)*0.08 = 175 + 14 = 189

Analysis: This example beautifully illustrates modularity. The AI correctly breaks down
the problem into smaller, interconnected functions, demonstrating a fundamental
principle of good software design.

You've now mastered the basic "words" of JavaScript: variables and functions. You can
prompt AI to create them, manipulate them, and combine them to perform more complex
tasks. This foundational knowledge is crucial for building any JavaScript application. In the

First, write a JavaScript function `calculateSubtotal` that takes an
array of prices and returns their sum.

Second, write a JavaScript function `calculateTax` that takes a subtotal
and a tax rate (e.g., 0.05 for 5%) and returns the tax amount.

Finally, write a function `calculateTotalCost` that takes an array of
prices and a tax rate. This function should use `calculateSubtotal` and
`calculateTax` to compute and return the final total cost.

Conclusion: Your Growing Vocabulary

next chapter, we will explore how to work with collections of data, such as lists and
dictionaries.

References:

MDN Web Docs: Variables
MDN Web Docs: Functions
JavaScript.info: Functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#Declarations
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://javascript.info/function-basics

Just as Forth allowed you to manipulate data on the stack, JavaScript provides powerful
ways to organise and manipulate collections of information. The two most fundamental data
structures in JavaScript are arrays (ordered lists of items) and objects (collections of key-
value pairs, similar to dictionaries). Understanding how to prompt AI to work with these
structures is crucial for building any meaningful application.

This chapter will guide you through prompting AI to create, access, and manipulate data
within arrays and objects. We will cover everyday operations and demonstrate how AI can
assist in handling complex data scenarios.

Arrays are used to store multiple values in a single variable. Each item in an array has an
index, starting from 0.

Goal: Create an array of fruits and access specific elements.

Prompt:

AI-Generated Code (Expected):

const fruits = ["apple", "banana", "cherry"];
console.log(fruits[1]); // Expected output: banana

Analysis: The AI correctly declares an array and uses bracket notation ([1]) to
access the element at index 1 (the second element).

Create a JavaScript array named `fruits` containing the strings "apple",
"banana", and "cherry". Then, write code to print the second fruit in
the array to the console.

Chapter 6: Working with Data - Prompting
for Structures and Manipulation
Organising Information: Arrays and Objects

Arrays: Ordered Collections

Example 1: Creating and Accessing Arrays

Goal: Add a new fruit to the end of the array and remove the last fruit.

Prompt:

Given the `fruits` array: `["apple", "banana", "cherry"]`.

First, add "grape" to the end of the array.
Second, remove the last element from the array.
Finally, print the modified array to the console.

AI-Generated Code (Expected):

Analysis: The AI correctly uses push() to add an element to the end and pop()

to remove the last element, demonstrating standard array manipulation methods.

Goal: Print each fruit in the array using a loop.

Prompt:

AI-Generated Code (Expected):

const fruits = ["apple", "banana", "cherry"];

fruits.push("grape"); // Adds "grape" to the end
console.log(fruits); // Expected: ["apple", "banana", "cherry", "grape"]

fruits.pop(); // Removes the last element ("grape")
console.log(fruits); // Expected: ["apple", "banana", "cherry"]

Given the `fruits` array: `["apple", "banana", "cherry"]`.

Write JavaScript code to iterate over this array and print each fruit to
the console, one per line.

Example 2: Adding and Removing Elements

Example 3: Iterating Over Arrays

const fruits = ["apple", "banana", "cherry"];

for (let i = 0; i < fruits.length; i++) {
 console.log(fruits[i]);
}

// Or using forEach (more modern):
// fruits.forEach(function(fruit) {
// console.log(fruit);
// });

Analysis: The AI provides both a traditional for loop and the more modern
forEach method, showing different ways to process each item in an array.

Objects are used to store collections of data and more complex entities. Data is stored as
key-value pairs, where keys are strings (or Symbols) and values can be any data type.

Goal: Create an object representing a person and access their properties.

Prompt:

AI-Generated Code (Expected):

const person = {
 firstName: "John",
 lastName: "Doe",
 age: 30,
 isStudent: false
};

console.log(person.firstName); // Expected output: John
console.log(person.age); // Expected output: 30

Create a JavaScript object named `person` with the following properties:
- `firstName`: "John"
- `lastName`: "Doe"
- `age`: 30
- `isStudent`: false

Then, print the person's `firstName` and `age` to the console.

Objects: Key-Value Collections

Example 4: Creating and Accessing Objects

Analysis: The AI correctly defines an object using curly braces and accesses
properties using dot notation (person.firstName).

Goal: Change a person's age and add a new property.

Prompt:

Given the `person` object: `{ firstName: "John", lastName: "Doe", age:
30, isStudent: false }`.

First, change the `age` property to 31.
Second, add a new property `city` with the value "New York".
Finally, print the updated `person` object to the console.

AI-Generated Code (Expected):

const person = {
 firstName: "John",
 lastName: "Doe",
 age: 30,
 isStudent: false
};

person.age = 31; // Modifying an existing property
person.city = "New York"; // Adding a new property

console.log(person);
// Expected: { firstName: "John", lastName: "Doe", age: 31,
isStudent: false, city: "New York" }

Analysis: The AI demonstrates how to update existing properties and add new ones to
an object.

Real-world data often involves collections of objects, such as a list of users or products.
Arrays of objects are very common.

Goal: Create an array of user objects and find a specific user.

Prompt:

Example 5: Modifying Object Properties

Combining Arrays and Objects

Example 6: Array of Objects

AI-Generated Code (Expected):

const users = [
 { id: 1, name: "Alice", email: "alice@example.com" },
 { id: 2, name: "Bob", email: "bob@example.com" }
];

function findUserById(id, userList) {
 for (let i = 0; i < userList.length; i++) {
 if (userList[i].id === id) {
 return userList[i];
 }
 }
 return null;
}

// Example usage:
// console.log(findUserById(1, users)); // Expected: { id: 1, name:
"Alice", email: "alice@example.com" }
// console.log(findUserById(3, users)); // Expected: null

Analysis: This example showcases how to create and iterate over an array of objects,
a pervasive pattern in web development. The findUserById function demonstrates
searching within this structure.

Arrays and objects are the fundamental building blocks for structuring data in JavaScript. By
mastering how to prompt AI to create, manipulate, and query these structures, you gain the
ability to handle virtually any kind of information your applications might need. In the next
chapter, we will learn how to control the flow of your programs using conditional statements
and loops.

References:

Create a JavaScript array named `users`. Each element in the array
should be an object with `id`, `name`, and `email` properties.
Add two user objects:
- User 1: id 1, name "Alice", email "alice@example.com"
- User 2: id 2, name "Bob", email "bob@example.com"

Then, write a function `findUserById` that takes an `id` and the `users`
array, and returns the user object with that `id`. If no user is found,
return `null`.

Conclusion: Structuring Your Data

MDN Web Docs: Arrays
MDN Web Docs: Objects
JavaScript.info: Objects

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://javascript.info/object

In programming, it's often necessary to make decisions based on certain conditions or to
repeat a set of actions multiple times. Just as Forth uses conditional words and looping
constructs to control program execution, JavaScript provides powerful mechanisms for
controlling the flow of your code. Understanding these concepts and how to prompt AI to
generate them is fundamental to building dynamic and interactive applications.

This chapter will cover conditional statements (if , else if , else , switch) and
looping constructs (for , while , do...while , forEach), demonstrating how to
use AI to implement logic and repetition in your JavaScript code.

Conditional statements allow your program to execute different blocks of code based on
whether a specified condition is true or false.

These are the most common conditional statements, allowing for branching logic.

Prompt:

AI-Generated Code (Expected):

Write a JavaScript function `checkNumber` that takes one argument, `num`.
- If `num` is positive, print "The number is positive."
- If `num` is negative, print "The number is negative."
- If `num` is zero, print "The number is zero."

Chapter 7: Controlling the Flow - Logic,
Conditionals, and Loops
Guiding Your Code: Decisions and Repetition

Conditional Statements: Making Decisions

The if , else if , and else Statements

function checkNumber(num) {
 if (num > 0) {
 console.log("The number is positive.");
 } else if (num < 0) {
 console.log("The number is negative.");
 } else {
 console.log("The number is zero.");
 }
}

// Example usage:
// checkNumber(5); // Output: The number is positive.
// checkNumber(-3); // Output: The number is negative.
// checkNumber(0); // Output: The number is zero.

Analysis: The AI correctly uses if , else if , and else to handle three
different conditions, demonstrating clear branching logic.

The switch statement is an alternative to if...else if...else when you have
many possible execution paths based on a single variable's value.

Prompt:

AI-Generated Code (Expected):

Write a JavaScript function `getWeekdayName` that takes a number `day`
(0 for Sunday, 1 for Monday, etc.) and returns the corresponding weekday
name. Use a `switch` statement. If the number is not between 0 and 6,
return "Invalid day."

The switch Statement

function getWeekdayName(day) {
 switch (day) {
 case 0:
 return "Sunday";
 case 1:
 return "Monday";
 case 2:
 return "Tuesday";
 case 3:
 return "Wednesday";
 case 4:
 return "Thursday";
 case 5:
 return "Friday";
 case 6:
 return "Saturday";
 default:
 return "Invalid day.";
 }
}

// Example usage:
// console.log(getWeekdayName(3)); // Output: Wednesday
// console.log(getWeekdayName(7)); // Output: Invalid day.

Analysis: The AI correctly implements the switch statement, including the
default case for invalid input, which is good practice.

Loops allow you to execute a block of code repeatedly until a specific condition is met. This
is essential for processing lists of data, performing calculations, or generating repetitive
content.

The for loop is commonly used when you know exactly how many times you want to
repeat a block of code.

Prompt:

Write a JavaScript `for` loop that prints numbers from 1 to 5 to the
console.

AI-Generated Code (Expected):

Looping Constructs: Repeating Actions

The for Loop

for (let i = 1; i <= 5; i++) {
 console.log(i);
}

// Expected output:
// 1
// 2
// 3
// 4
// 5

Analysis: The AI generates a standard for loop, correctly setting the initialisation,
condition, and increment.

The while loop executes a block of code as long as a specified condition is true. It's often
used when the number of iterations is not known beforehand.

Prompt:

Write a JavaScript `while` loop that starts with a variable `count`
initialised to 0. The loop should continue as long as `count` is less
than 3. Inside the loop, print the current value of `count` and then
increment `count` by 1.

AI-Generated Code (Expected):

let count = 0;
while (count < 3) {
 console.log(count);
 count++;
}

// Expected output:
// 0
// 1
// 2

Analysis: The AI correctly sets up a while loop, ensuring the count variable is
incremented to avoid an infinite loop.

The do...while loop is similar to while , but it guarantees that the loop body will

The while Loop

The do...while Loop

execute at least once, because the condition is evaluated after the first iteration.

Prompt:

AI-Generated Code (Expected):

let isDone = true;

do {
 console.log("Hello!");
} while (!isDone);

// Expected output:
// Hello!

Analysis: The AI demonstrates the do...while loop's characteristic of executing at
least once, regardless of the initial condition.

Introduced in ES6, the for...of loop offers a more straightforward way to iterate over
iterable objects, including arrays, strings, Maps, Sets, and more.

Prompt:

Given an array of names: `const names = ["Alice", "Bob", "Charlie"];`

Write a JavaScript `for...of` loop to print each name to the console.

AI-Generated Code (Expected):

const names = ["Alice", "Bob", "Charlie"];

for (const name of names) {
 console.log(name);
}

// Expected output:
// Alice
// Bob
// Charlie

Write a JavaScript `do...while` loop that prints "Hello!" to the console
once, even if a condition `isDone` is initially true.

The for...of Loop (for Iterables)

Analysis: The AI correctly uses the for...of loop, which is often preferred for its
readability when iterating over array elements.

Conditional statements and loops are the bedrock of program logic. They enable your
JavaScript code to respond dynamically to various situations and process data efficiently. By
effectively prompting AI to generate these control flow structures, you gain immense power
in directing your program's behaviour. In the next chapter, we will delve into the art of refining
and debugging AI-generated code.

References:

MDN Web Docs: Conditional (ternary) operator
MDN Web Docs: if...else
MDN Web Docs: switch
MDN Web Docs: for loop
MDN Web Docs: while loop
MDN Web Docs: do...while
MDN Web Docs: for...of

Conclusion: Directing Your Program's Path

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/if...else
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/while
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/do...while
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

AI-generated code, while impressive, is rarely perfect. Just as a sculptor refines a raw block
of marble into a masterpiece, a developer must refine the AI's output into robust, efficient,
and maintainable code. This process involves debugging (identifying and correcting errors)
and improving (optimising and refining) the generated code. This chapter will equip you with
the skills to critically evaluate AI-generated code and transform it into production-ready
solutions.

Before we dive into refinement, it's important to recognise the typical shortcomings of AI-
generated code:

1. Syntax Errors: While AIs are generally good with syntax, minor typos or incorrect
punctuation can still occur, especially in complex snippets or less common language
features.

2. Logical Errors: The code may be syntactically correct, but it doesn't do what you
intended. This often stems from ambiguous prompts or the AI misinterpreting your
requirements.

3. Inefficiency: The generated code may work, but it may not be the most performant or
resource-efficient solution, especially for large datasets or high-traffic applications.

4. Lack of Best Practices: AI might not always adhere to the latest coding standards,
security practices, or idiomatic patterns for a given language or framework.

5. Incomplete or Generic Solutions: The AI may provide a general solution when a
specific, nuanced one is required, or it may omit crucial parts of the code.

6. Security Vulnerabilities: Poorly prompted or unreviewed AI code can introduce

Chapter 8: The Art of Refinement -
Debugging and Improving AI-Generated
Code
From Raw Output to Polished Product: The
Developer's Touch

Understanding Common Issues with AI-Generated
Code

security flaws.
7. Hallucinations: The AI might confidently generate code that looks plausible but is

entirely incorrect or nonsensical in context.

Debugging is the process of identifying and removing errors from computer hardware or
software. When working with AI-generated code, your debugging process will often involve:

Before running any code, take the time to review the AI-generated code. Does it make
sense? Does it align with your understanding of the problem? Look for obvious logical flaws
or missing pieces.

Your VS Code workbench is equipped with powerful debugging tools.

Console Logging (console.log()): This is your most basic and often most
effective debugging tool. Sprinkle console.log() statements throughout your code
to inspect variable values at different points in execution.

Prompt:

Add console.log statements to this JavaScript function to show the
value of 'sum' after each iteration of the loop.

function calculateSum(numbers) {
 let sum = 0;
 for (let i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 }
 return sum;
}

AI-Generated Code (Expected):

Debugging AI-Generated Code

1. Read and Understand the Code

2. Use Your Development Environment's Tools

function calculateSum(numbers) {
 let sum = 0;
 for (let i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 console.log(`Sum after iteration ${i}: ${sum}`);
 // Added console.log
 }
 return sum;
}

Debugger: VS Code has a built-in debugger that allows you to pause code execution,
step through lines, inspect variables, and set breakpoints. This is invaluable for
understanding complex logic.

Prompt:

Explain how to set a breakpoint in Visual Studio Code for a
JavaScript file and step through the code line by line.

AI-Generated Explanation (Expected):

Always test AI-generated code with various inputs, including edge cases (e.g., empty arrays,
zero values, invalid inputs). This helps uncover logical errors.

To set a breakpoint in VS Code:
1. Open your JavaScript file in the editor.
2. Click in the gutter (the space to the left of the line numbers)
next to the line of code where you want execution to pause. A red dot
will appear, indicating a breakpoint.

To step through code:
1. Go to the 'Run and Debug' view (Ctrl+Shift+D or Cmd+Shift+D).
2. Click the 'Run and Debug' button (green play icon).
3. When execution pauses at your breakpoint, use the debugging
controls in the top bar:
 - 'Step Over' (F10): Executes the current line and moves to the
next.
 - 'Step Into' (F11): If the current line calls a function, it
steps into that function.
 - 'Step Out' (Shift+F11): Steps out of the current function.
 - 'Continue' (F5): Continues execution until the next breakpoint
or end of the program.

3. Test Cases

Once the code is functional, the next step is to improve it. This involves optimisation,
refactoring, and adhering to best practices.

Refactoring refers to the process of restructuring existing computer code without altering its
external behaviour. It makes the code cleaner, easier to understand, and simpler to maintain.

Prompt:

AI-Generated Code (Expected):

function filterEvenNumbers(numbers) {
 return numbers.filter(num => num % 2 === 0);
}

Analysis: The AI utilises the filter() array method, which is a more concise and
readable approach to achieving the same result as the for loop, demonstrating
modern JavaScript practices.

Sometimes, AI might generate code that works but isn't the most efficient. You can prompt it
to optimise.

Prompt:

Refactor this JavaScript function to improve readability and use more
modern array methods. The function currently filters an array of numbers
to keep only even numbers.

function filterEvenNumbers(numbers) {
 let evenNumbers = [];
 for (let i = 0; i < numbers.length; i++) {
 if (numbers[i] % 2 === 0) {
 evenNumbers.push(numbers[i]);
 }
 }
 return evenNumbers;
}

Improving AI-Generated Code: Beyond
Correctness

1. Refactoring for Readability and Maintainability

2. Optimising for Performance

AI-Generated Code (Expected):

function sumArray(arr) {
 // For very large arrays, a simple for loop is often the most
performant
 // as it avoids the overhead of higher-order functions like reduce.
 let total = 0;
 for (let i = 0; i < arr.length; i++) {
 total += arr[i];
 }
 return total;
}

// Alternative (often less performant for very large arrays, but more
concise):
// function sumArray(arr) {
// return arr.reduce((acc, curr) => acc + curr, 0);
// }

Analysis: The AI correctly identifies that for very large arrays, a traditional for loop
can be more performant than reduce due to less overhead, and explains why. This
shows an understanding of performance considerations.

Production-ready code needs to handle unexpected inputs or situations gracefully.

Prompt:

Optimise this JavaScript function for improved performance when handling
extremely large arrays. The function finds the sum of all numbers in an
array.

function sumArray(arr) {
 let total = 0;
 for (const num of arr) {
 total += num;
 }
 return total;
}

3. Adding Error Handling and Robustness

AI-Generated Code (Expected):

function processData(data) {
 if (!Array.isArray(data)) {
 throw new Error("Input must be an array.");
 }
 return data.map(item => item * 2);
}

Analysis: The AI adds a check using Array.isArray() and throws a meaningful
error, making the function more robust.

Debugging and improving AI-generated code are critical skills that elevate you from a mere
prompt-giver to an actual developer. The AI is a powerful assistant, but your expertise in
identifying issues, understanding best practices, and applying refinement techniques is what
transforms raw output into high-quality software. Embrace this iterative process, and you'll
find yourself building more reliable and efficient applications. In the next chapter, we will
explore how to create larger, more structured applications using classes, modules, and APIs.

References:

MDN Web Docs: Debugging JavaScript
Visual Studio Code: Debugging
Refactoring Guru
MDN Web Docs: Array.prototype.filter()

Add error handling to this JavaScript function. It should throw an error
if the input 'data' is not an array.

function processData(data) {
 // Assume data is an array for now,
 return data.map(item => item * 2);
}

Conclusion: The Human in the Loop

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/Debugging_tools
https://code.visualstudio.com/docs/editor/debugging
https://refactoring.guru/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

As your JavaScript applications grow in complexity, simply writing functions and variables in
a single file becomes unwieldy. Just as Forth allows you to build complex programs from
smaller, well-defined "words," JavaScript provides powerful features for organising your code
into reusable and maintainable structures. This chapter will introduce you to Classes,
Modules, and APIs, and how to leverage AI to work with them effectively.

In object-oriented programming, a class is a blueprint for creating objects (a particular
instance of the class). It encapsulates data (properties) and functions (methods) that operate
on that data. While JavaScript is primarily a prototype-based language, it offers a class

syntax that makes object-oriented programming more familiar to developers from other
languages.

Goal: Define a Car class with properties for make , model , and year , and a
method to display car information.

Prompt:

AI-Generated Code (Expected):

Define a JavaScript class named `Car`. The constructor should take `make`, `model`,
and `year` as arguments and assign them as properties.
Add a method `displayInfo` that returns a string like
"This is a [year] [make] [model]."

Chapter 9: Building Larger Structures -
Classes, Modules, and APIs
Beyond Simple Functions: Organising Complex
Code

Classes: Blueprints for Objects

Example 1: Defining a Simple Class

Analysis: The AI correctly defines a class with a constructor and a method,
demonstrating the basic structure of a JavaScript class.

Classes can inherit properties and methods from other classes, promoting code reuse.

Goal: Create an ElectricCar class that inherits from Car and adds a
batteryLife property.

Prompt:

AI-Generated Code (Expected):

class Car {
 constructor(make, model, year) {
 this.make = make;
 this.model = model;
 this.year = year;
 }

 displayInfo() {
 return `This is a ${this.year} ${this.make} ${this.model}.`;
 }
}

// Example usage:
// const myCar = new Car("Toyota", "Camry", 2020);
// console.log(myCar.displayInfo()); // Expected: This is a 2020 Toyota Camry.

Create a JavaScript class named `ElectricCar` that extends the `Car` class.
Its constructor should take `make`, `model`, `year`, and `batteryLife` as arguments.
The `displayInfo` method should be overridden to also include battery life
information.

Example 2: Class Inheritance

Analysis: The AI demonstrates class inheritance using extends and super() ,
as well as method overriding, which are key concepts in object-oriented design.

As your projects grow, you'll want to split your code into separate files (modules) to keep it
organised and prevent naming conflicts. JavaScript modules (import and export)
provide a standardised way to do this.

Goal: Create a module that exports a utility function and imports it into another file.

Prompt:

AI-Generated Code (Expected):

utils.js :

class ElectricCar extends Car {
 constructor(make, model, year, batteryLife) {
 super(make, model, year); // Call the parent Car constructor
 this.batteryLife = batteryLife;
 }

 displayInfo() {
 return `${super.displayInfo()} It has a battery life of ${this.batteryLife} kWh.`;
 }
}

// Example usage:
// const tesla = new ElectricCar("Tesla", "Model 3", 2023, 75);
// console.log(tesla.displayInfo()); // Expected: This is a 2023 Tesla Model 3.
It has a battery life of 75 kWh.

Create two JavaScript files.

File 1 (utils.js): Export a function named `capitalise` that takes a string and returns it
with the first letter capitalised.

File 2 (main.js): Import the `capitalise` function from `utils.js` and use it to
capitalise the string "hello world", then print the result to the console.

Modules: Organising Your Codebase

Example 3: Exporting and Importing Functions

export function capitalize(str) {
 if (!str) return "";
 return str.charAt(0).toUpperCase() + str.slice(1);
}

main.js :

import { capitalize } from './utils.js';

const message = "hello world";
const capitalizedMessage = capitalize(message);
console.log(capitalizedMessage); // Expected: Hello world

Analysis: The AI correctly uses export in utils.js and import in
main.js , demonstrating how to modularise code. It also includes basic input

validation in the capitalise function.

An API (Application Programming Interface) is a set of rules and definitions that allow
different software applications to communicate with each other. In web development, you'll
frequently interact with web APIs to fetch data from servers (e.g., weather data, stock prices,
social media feeds) or send data to them.

JavaScript provides the fetch API for making network requests.

Goal: Fetch a random joke from a public API and display it.

Prompt:

AI-Generated Code (Expected):

Write a JavaScript function `fetchRandomJoke` that fetches a random joke from the JokeAPI
(https://v2.jokeapi.dev/joke/Any?safe-mode). The function should return the joke text
(either `joke` or `setup` + `delivery`).
Handle potential errors during the fetch operation.

APIs: Interacting with External Services

Example 4: Fetching Data from a Public API

Analysis: The AI correctly uses the fetch API with async/await for
asynchronous operations, parses JSON data, and handles different joke types (single
vs. two-part). Crucially, it includes error handling, which is vital for robust API
interactions.

Classes, Modules, and APIs are essential tools for building larger, more organised, and
interconnected JavaScript applications. By mastering how to prompt AI to generate and work
with these structures, you can tackle more ambitious projects and integrate your code with
external services. In the next chapter, we will bring all these concepts together to build a
complete, real-world application.

References:

MDN Web Docs: Classes
MDN Web Docs: JavaScript modules
MDN Web Docs: Using the Fetch API
JokeAPI Documentation

async function fetchRandomJoke() {
 try {
 const response = await fetch("https://v2.jokeapi.dev/joke/Any?safe-mode");
 if (!response.ok) {
 throw new Error(`HTTP error! status: ${response.status}`);
 }
 const data = await response.json();

 if (data.type === "single") {
 return data.joke;
 } else if (data.type === "twopart") {
 return `${data.setup} ... ${data.delivery}`;
 }
 } catch (error) {
 console.error("Could not fetch joke:", error);
 return "Failed to fetch a joke. Please try again later.";
 }
}

// Example usage (in an async context):
// (async () => {
// const joke = await fetchRandomJoke();
// console.log(joke);
// })();

Conclusion: Building Scalable Applications

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://jokeapi.dev/

Forth is known for its interactive nature, allowing you to build and test code incrementally.
Similarly, a significant part of JavaScript's power lies in its ability to make web pages
dynamic and interactive. This involves responding to user actions (such as clicks or key
presses) and modifying the content and style of a web page after it has loaded. This chapter
will introduce you to the Document Object Model (DOM), event handling, and how to
prompt AI to create interactive web experiences.

The DOM is a programming interface for web documents. It represents the page so that
programs can change the document structure, style, and content. The DOM represents the
document as a tree of nodes and objects, allowing programming languages to interact with
the page.

Think of the DOM as a tree-like structure where each HTML element (like <div> , <p> ,
) is a node. JavaScript can access and modify these nodes.

Goal: Change the text content of an HTML element.

Prompt:

AI-Generated Code (Expected):

I have an HTML paragraph with the ID "myParagraph". Write JavaScript code to change its text
content to "Hello from JavaScript!".

Chapter 10: Bringing Code to Life -
Interactive Web Development
The Dynamic Web: Interacting with the User

The Document Object Model (DOM): Your Web
Page's Structure

Example 1: Accessing and Modifying Elements

Analysis: The AI correctly uses document.getElementById() to select the
element and textContent to change its content. This is a fundamental DOM
manipulation technique.

Goal: Change the background colour of a div when a button is clicked.

Prompt:

AI-Generated Code (Expected):

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>DOM Example</title>
</head>
<body>
 <p id="myParagraph">Original text.</p>

 <script>
 const paragraphElement = document.getElementById("myParagraph");
 paragraphElement.textContent = "Hello from JavaScript!";
 </script>
</body>
</html>

I have an HTML div with the ID "myBox" and a button with the ID "changeColorButton".
Write JavaScript code so that when the button is clicked, the background colour of "myBox"
changes to "lightblue".

Example 2: Changing Element Styles

Analysis: This example introduces event handling (addEventListener) and
directly manipulating an element's style using element.style.property .

Events are actions or occurrences that happen in the system you are programming, which
the system tells you about so you can respond to them. Common web events include clicks,
key presses, form submissions, and page loads.

Goal: Display an alert message when a button is clicked.

Prompt:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Style Change Example</title>
 <style>
 #myBox {
 width: 100px;
 height: 100px;
 background-color: lightgray;
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <div id="myBox"></div>
 <button id="changeColorButton">Change Color</button>

 <script>
 const myBox = document.getElementById("myBox");
 const changeColorButton = document.getElementById("changeColorButton");

 changeColorButton.addEventListener("click", function() {
 myBox.style.backgroundColor = "lightblue";
 });
 </script>
</body>
</html>

Event Handling: Responding to User Actions

Example 3: Click Events

AI-Generated Code (Expected):

Analysis: This demonstrates the basic addEventListener pattern for handling
click events.

Goal: Get text from an input field and display it in a paragraph when a form is submitted.

Prompt:

AI-Generated Code (Expected):

Write JavaScript code that, when a button with the ID "showAlertButton" is clicked, displays
an alert box with the message "Button Clicked!".

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Click Event Example</title>
</head>
<body>
 <button id="showAlertButton">Click Me</button>

 <script>
 const showAlertButton = document.getElementById("showAlertButton");

 showAlertButton.addEventListener("click", function() {
 alert("Button Clicked!");
 });
 </script>
</body>
</html>

I have an HTML form with an input field (id="nameInput") and a submit button (type="submit").
 There's also a paragraph (id="displayArea").

Write JavaScript code to:
- Prevent the default form submission behaviour.
- When the form is submitted, get the value from "nameInput".
- Display the input value in the "displayArea" paragraph.

Example 4: Input Events and Form Handling

Analysis: This example shows how to handle form submissions, prevent the default
browser behaviour (event.preventDefault()), and retrieve input values from
form fields.

By understanding the DOM and mastering event handling, you can transform static web
pages into dynamic, interactive experiences. Prompting AI to assist with these tasks will
significantly accelerate your development process, enabling you to focus on the user
experience rather than the intricate details of DOM manipulation. In the next chapter, we will
explore more advanced prompting techniques to get even better results from your AI
assistant.

References:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Form Example</title>
</head>
<body>
 <form id="myForm">
 <label for="nameInput">Enter your name:</label>
 <input type="text" id="nameInput">
 <button type="submit">Submit</button>
 </form>
 <p id="displayArea"></p>

 <script>
 const myForm = document.getElementById("myForm");
 const nameInput = document.getElementById("nameInput");
 const displayArea = document.getElementById("displayArea");

 myForm.addEventListener("submit", function(event) {
 event.preventDefault(); // Prevent default form submission
 const name = nameInput.value;
 displayArea.textContent = `Hello, ${name}!`;
 });
 </script>
</body>
</html>

Conclusion: Making Your Web Pages Alive

MDN Web Docs: Introduction to the DOM
MDN Web Docs: EventTarget.addEventListener()
MDN Web Docs: HTMLFormElement.submit()

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/HTMLFormElement/submit_event

In previous chapters, you've learned the fundamentals of prompt engineering and how to get
AI to generate basic JavaScript code, handle data structures, control program flow, and even
create interactive web elements. Now, it's time to elevate your prompting skills. An advanced
prompt engineer knows how to craft sophisticated instructions to unlock the full potential of
AI code generation.

This chapter will delve into more advanced prompting techniques, including:

Few-Shot Prompting: Providing examples to guide the AI.
Chain-of-Thought Prompting: Encouraging the AI to reason step-by-step.
Role-Playing and Persona: Guiding the AI's perspective.
Iterative Prompting and Refinement: The conversational approach to code
generation.
Constraint-Based Prompting: Imposing specific rules and limitations.

Few-shot prompting involves giving the AI a few examples of input-output pairs before asking
it to complete a new task. This helps the AI understand the desired format, style, and logic,
especially for tasks that are nuanced or require a specific pattern.

Goal: Convert an array of objects into a specific string format.

Prompt:

Chapter 11: Advanced Prompting
Techniques - Getting More from Your AI
Assistant
Beyond the Basics: Mastering the Art of
Conversation with AI

Few-Shot Prompting: Learning by Example

Example 1: Formatting Data

AI-Generated Code (Expected):

Analysis: By providing a clear example, the AI understands the exact output format
required, even for a slightly complex transformation.

Chain-of-thought prompting encourages the AI to break down a complex problem into
intermediate steps, showing its reasoning process. This can lead to more accurate and
reliable results, especially for multi-step coding tasks.

Goal: Generate a function to calculate Fibonacci numbers, explaining the logic.

Convert the following array of user objects into a comma-separated string of their names,
formatted as "Name (Email)".

Example:
Input: [
 { name: "Alice", email: "alice@example.com" },
 { name: "Bob", email: "bob@example.com" }
]
Output: "Alice (alice@example.com), Bob (bob@example.com)"

Now, convert this input:
Input: [
 { name: "Charlie", email: "charlie@example.com" },
 { name: "David", email: "david@example.com" },
 { name: "Eve", email: "eve@example.com" }
]

const users = [
 { name: "Charlie", email: "charlie@example.com" },
 { name: "David", email: "david@example.com" },
 { name: "Eve", email: "eve@example.com" }
];

const formattedString = users.map(user => `${user.name} (${user.email})`).join(', ');
console.log(formattedString);
// Expected Output: "Charlie (charlie@example.com), David (david@example.com),
Eve (eve@example.com)"

Chain-of-Thought Prompting: Thinking Step-by-
Step

Example 2: Complex Logic with Explanation

Prompt:

AI-Generated Response (Expected):

Analysis: The AI provides a clear, step-by-step explanation along with the code,
making it easier to understand the solution and verify its correctness.

Let's think step by step. First, define what a Fibonacci sequence is. Second, write a
JavaScript function `fibonacci` that takes a number `n` and returns the nth Fibonacci
number. Third, explain the logic of your function.

Step 1: Definition of Fibonacci Sequence

The Fibonacci sequence is a series of numbers where each number is the sum of the two
preceding ones, usually starting with 0 and 1.
The sequence begins: 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on.

Step 2: JavaScript Function

function fibonacci(n) {
 if (n <= 0) return 0;
 if (n === 1) return 1;

 let a = 0, b = 1;
 for (let i = 2; i <= n; i++) {
 let next = a + b;
 a = b;
 b = next;
 }
 return b;
}

Step 3: Explanation of Logic
- **Base Cases:** The function first handles the base cases: if `n` is 0, it returns 0;
if `n` is 1, it returns 1. These are the starting points of the sequence.

- Iterative Approach: For `n` greater than 1, an iterative approach is used.
Two variables, `a` and `b`, are initialised to 0 and 1, respectively, representing the
previous two Fibonacci numbers.

- Looping: The `for` loop starts from `i = 2` up to `n`. In each iteration:
 - `next` calculates the sum of `a` and `b` (the following Fibonacci number).
 - `a` is updated to the value of `b`.
 - `b` is updated to the value of `next`.

- Return Value: After the loop completes, `b` will hold the nth Fibonacci number.

Assigning a specific role or persona to the AI can influence its tone, style, and the type of
code it generates. This is useful when you need code that adheres to specific professional
standards or has a particular focus (e.g., security, performance).

Goal: Generate a function to sanitise user input, with a focus on security.

Prompt:

AI-Generated Response (Expected):

Act as a cybersecurity expert. Write a JavaScript function `sanitizeInput` that takes a string of user input and removes any potentially malicious HTML or script tags to prevent XSS (Cross-Site Scripting) attacks. Explain your security considerations.

function sanitizeInput(input) {
 // Create a new DOM parser to safely parse the input string
 const doc = new DOMParser().parseFromString(input, 'text/html');

 // Create a temporary div to hold the parsed content
 const div = document.createElement('div');
 div.appendChild(doc.body);

 // Remove script tags and attributes that could lead to XSS
 // This is a simplified example; a robust solution would use a library like DOMPurify
 const scripts = div.getElementsByTagName('script');
 for (let i = scripts.length - 1; i >= 0; i--) {
 scripts[i].parentNode.removeChild(scripts[i]);
 }

 // Remove event handlers (e.g., onclick, onerror) from all elements
 const allElements = div.querySelectorAll('*');
 allElements.forEach(element => {
 Array.from(element.attributes).forEach(attr => {
 if (attr.name.startsWith('on')) {
 element.removeAttribute(attr.name);
 }
 });
 });

 return div.innerHTML;
}

Role-Playing and Persona: Guiding the AI's
Perspective

Example 3: Security-Focused Code

Analysis: The AI not only provides a function but also explains the security implications
and best practices, demonstrating its understanding of the

/*
Security Considerations:

1. Client-Side vs. Server-Side: Client-side sanitisation (like this example) is a first
line of defence but is NOT sufficient on its own.
Server-side sanitisation is crucial because malicious actors can bypass client-side checks.

2. Complexity of XSS: XSS attacks can be very sophisticated. Manually implementing
sanitisation can be prone to errors and incomplete.
For production applications, it is highly recommended to use well-vetted, dedicated
sanitisation libraries (e.g., DOMPurify for client-side, or server-side libraries
appropriate for your backend language).

3. Whitelisting vs. Blacklisting: This simplified example uses a form of blacklisting
(removing known harmful elements/attributes). A more secure approach is whitelisting,
where you only allow known safe elements and attributes.

4. Contextual Escaping: Different contexts (HTML, attributes, JavaScript, CSS, URLs)
require different escaping mechanisms. A general-purpose sanitiser might not cover all
edge cases.
*/

As you become more proficient in prompting AI for code, it's crucial to understand that this is
not just about generating lines of code. It's about a new form of collaboration between
humans and machines. Just as Forth emphasises the interaction between the programmer
and the system, AI-assisted coding thrives on a symbiotic relationship where the AI
augments your capabilities, and you guide its intelligence. This chapter will explore best
practices for human-AI partnerships, focusing on collaboration workflows, ethical
considerations, and the responsible use of AI.

Integrating AI into your coding workflow isn't about replacing you; it's about making you more
efficient and effective. Here are some best practices for collaborating with your AI assistant:

1. Start with Clear Intent: Before prompting, have a clear idea of what you want to
achieve. A well-defined problem statement is the foundation for a good prompt.

2. Iterate and Refine Prompts: Treat prompting as a conversation. Don't expect perfect
code on the first try. Refine your prompts based on the AI's responses, providing more
context, constraints, or examples as needed.

3. Review and Understand Generated Code: Never blindly trust AI-generated code.
Always review it for correctness, efficiency, security, and adherence to your project's
standards. Understand why the AI generated a particular solution.

4. Test Thoroughly: Just as with any other code, AI-generated code requires rigorous
testing. Write unit tests, integration tests, and perform manual testing to ensure it
behaves as expected.

5. Integrate Incrementally: For larger features, integrate AI-generated code in small,
manageable chunks. This makes it easier to debug and verify the code.

Chapter 12: Best Practices in AI-Assisted
Coding – Collaboration and Ethics
The Human-AI Partnership: Beyond Code
Generation

Collaborative Workflows with AI

6. Use AI for Repetitive Tasks: Leverage AI for tasks such as boilerplate code, simple
functions, regular expressions, or data format conversions. This frees you up for more
complex problem-solving.

7. Learn from AI: Pay attention to the patterns, libraries, or approaches the AI suggests. It
can expose you to new techniques and best practices that you might not have been
aware of.

8. Maintain Version Control: Utilise Git or another version control system. This allows
you to track changes, revert to previous versions, and collaborate effectively, even when
AI is involved.

As AI becomes more integrated into software development, new ethical questions arise.
Responsible use of AI is paramount.

1. Bias in Training Data: AI models are trained on vast datasets of existing code. If this
data contains biases (e.g., favouring certain coding styles, languages, or even reflecting
historical biases in human code), the AI might perpetuate or amplify them. Be aware of
this potential and actively work to mitigate it.

2. Intellectual Property and Licensing: The code generated by AI is derived from its
training data. The legal implications regarding intellectual property, copyright, and
licensing of AI-generated code are still evolving. Be mindful of the licenses of the code
snippets you use, especially if they are from open-source projects.

Prompt:

AI-Generated Explanation (Expected):

Explain the concept of open-source software licenses (e.g., MIT, GPL) and the
implications for using AI-generated code that might be derived from open-source projects.

Ethical Considerations in AI-Assisted Coding

3. Attribution and Credit: Some licenses require attribution to the original authors. Even
if the code is generated by AI, you may need to provide credit if the output is
substantially similar to existing open-source code.

4. Security and Privacy: AI-generated code can inadvertently introduce vulnerabilities or
expose sensitive information. Always review code for security risks and avoid sharing
confidential data in prompts.

5. Transparency: Be transparent with your team or stakeholders when using AI-generated
code. Document which parts of your codebase were AI-assisted and any relevant
license or attribution requirements.

AI is a powerful tool, but with great power comes great responsibility. Here are some guiding
principles for responsible AI-assisted coding:

Stay Informed: Keep up to date with the evolving legal and ethical landscape around AI
and software development.

Educate Others: Share your knowledge of best practices and ethical considerations
with your peers.

Open-source software licenses dictate how software can be used, modified, and
distributed. Key licenses include:

* MIT License: A permissive license, allowing almost unrestricted use, modification,
and distribution, provided the original copyright and license notice are included.
Code derived from MIT-licensed projects can often be used in proprietary software.

* GPL (General Public License): A copyleft license that requires any derivative work to
also be distributed under the GPL. If you incorporate GPL-licensed code into your
project (including code generated by AI that is based on GPL code), your entire project
may need to be open-sourced under the same license.

* Apache License 2.0: Similar to MIT but with explicit patent rights and requirements
for preserving notices and modifications.

* BSD Licenses: A family of permissive licenses with minimal restrictions, similar to
MIT.

When using AI-generated code, it's important to consider that the AI may have been
trained on code under various licenses. If the generated code closely resembles or is
derived from open-source projects, you may be obligated to comply with the original
license terms, particularly for copyleft licenses such as the GPL.

Responsible Use: Your Role as a Developer

Promote Inclusivity: Utilise AI to enhance the accessibility and inclusivity of your code,
and be aware of potential biases that may be inherent in AI-generated solutions.

Own Your Code: Ultimately, you are responsible for the code you ship. Use AI as a
collaborator, not a replacement for your own judgment and expertise.

The future of coding is collaborative. By combining your creativity, critical thinking, and
ethical awareness with the speed and breadth of AI, you can build better software and help
shape a responsible, inclusive, and innovative future for all developers.

Summary

In Starting Forth, you learned how to combine individual words into more complex definitions
and ultimately build applications. Now, it's time to apply all the JavaScript knowledge and AI
prompting techniques you've acquired to construct a complete, functional To-Do List
application. This project will integrate concepts from previous chapters, including DOM
manipulation, event handling, data structures, and perhaps even local storage for
persistence.

This chapter guides you through building a simple web-based To-Do List application step-by-
step, utilising AI to generate the necessary HTML, CSS, and JavaScript code. We will focus
on the core functionalities:

Adding new tasks
Marking tasks as complete
Deleting tasks
(Optional) Persisting tasks using Local Storage

Every web application starts with its structure (HTML) and presentation (CSS). We'll prompt
the AI to create a basic layout for our To-Do List.

Goal: Create the fundamental HTML for a To-Do List application, including an input field for
new tasks, an add button, and an unordered list to display tasks.

Prompt:

Chapter 13: Building a Real-World
Application - The To-Do List
Bringing It All Together: Your First Complete
Project

Project Setup: HTML and CSS

Example 1: Basic HTML Structure

AI-Generated Code (Expected):

Analysis: The AI provides a clean, semantic HTML structure, including placeholders for
our CSS and JavaScript files.

Goal: Add some basic CSS to make the To-Do List visually appealing.

Prompt:

AI-Generated Code (Expected):

body {
 font-family: Arial, sans-serif;

Generate the basic HTML structure for a simple To-Do List web application.
It should include:
- A main heading (h1) with the title "My To-Do List"
- An input field for new tasks (id="taskInput")
- A button to add tasks (id="addTaskBtn") with the text "Add Task"
- An empty unordered list (ul) with the id="taskList" where tasks will be displayed.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>My To-Do List</title>
 <link rel="stylesheet" href="style.css"> <!-- Link to our CSS file -->
</head>
<body>
 <h1>My To-Do List</h1>
 <div>
 <input type="text" id="taskInput" placeholder="Add a new task...">
 <button id="addTaskBtn">Add Task</button>
 </div>
 <ul id="taskList">

 <script src="script.js"></script> <!-- Link to our JavaScript file -->
</body>
</html>

Provide basic CSS for the To-Do List HTML structure. Set the body to a light background,
centre the main content, style the input field and button, and add padding to the list
items. Also, style completed tasks with a line-through text decoration.

Example 2: Basic CSS Styling

 background-color: #f4f4f4;
 display: flex;
 justify-content: center;
 align-items: flex-start; /* Align to top */
 min-height: 100vh;
 margin: 20px;
}

h1 {
 text-align: center;
 color: #333;
}

div {
 margin-bottom: 20px;
 display: flex;
 gap: 10px;
}

input[type="text"] {
 padding: 10px;
 border: 1px solid #ddd;
 border-radius: 4px;
 flex-grow: 1;
}

button {
 padding: 10px 15px;
 background-color: #007bff;
 color: white;
 border: none;
 border-radius: 4px;
 cursor: pointer;
}

button:hover {
 background-color: #0056b3;
}

ul {
 list-style: none;
 padding: 0;
 width: 100%;
 max-width: 500px; /* Limit width for better readability */
}

li {
 background-color: white;

 padding: 10px 15px;
 margin-bottom: 8px;
 border-radius: 4px;
 display: flex;
 justify-content: space-between;
 align-items: center;
 box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}

li.completed {
 text-decoration: line-through;
 color: #888;
 background-color: #e9e9e9;
}

li button {
 background-color: #dc3545; /* Red for delete button */
 padding: 5px 10px;
 font-size: 0.8em;
}

li button:hover {
 background-color: #c82333;
}

Analysis: The AI provides well-structured CSS that makes the application look clean
and functional, including a class for completed tasks.

Now for the main logic. We'll prompt the AI to handle adding, completing, and deleting tasks.

Goal: Implement the JavaScript to add a new task when the button is clicked.

Prompt:

Core Functionality: JavaScript

Example 3: Adding New Tasks

AI-Generated Code (Expected):

Analysis: The AI correctly implements the logic for adding tasks, including trimming
whitespace and clearing the input field.

Goal: Add functionality to mark tasks as complete and delete them.

Prompt:

Write JavaScript code for the To-Do List application.

1. Get references to the `taskInput`, `addTaskBtn`, and `taskList` elements.
2. Add an event listener to `addTaskBtn` for a 'click' event.
3. Inside the event listener:
 a. Get the value from `taskInput`.
 b. If the input is not empty, create a new `li` element.
 c. Set the `textContent` of the `li` to the task input value.
 d. Append the new `li` to the `taskList`.
 e. Clear the `taskInput` field.

// script.js
const taskInput = document.getElementById("taskInput");
const addTaskBtn = document.getElementById("addTaskBtn");
const taskList = document.getElementById("taskList");

addTaskBtn.addEventListener("click", function() {
 const taskText = taskInput.value.trim(); // .trim() removes leading/trailing whitespace

 if (taskText !== "") {
 const listItem = document.createElement("li");
 listItem.textContent = taskText;
 taskList.appendChild(listItem);
 taskInput.value = ""; // Clear input field
 }
});

Example 4: Marking Tasks as Complete and Deleting Tasks

AI-Generated Code (Expected):

Extend the JavaScript for the To-Do List. For each new task (and existing ones if you
were to load them):

1. Add a 'click' event listener to each `li` element. When clicked, toggle the 'completed'
 CSS class on that `li`.
2. Add a 'Delete' button inside each `li` element.
3. Add a 'click' event listener to the 'Delete' button. When clicked, remove the parent
 `li` element from the DOM.

Modify the task creation logic to include these features.

Analysis: The AI refactors the task creation into a separate function, adds the
completed class toggling, and includes a functional delete button. The
event.stopPropagation() is a crucial detail to prevent unintended behaviour.

Goal: Make the To-Do List tasks persist even after the browser is closed.

Prompt:

// script.js (updated)
const taskInput = document.getElementById("taskInput");
const addTaskBtn = document.getElementById("addTaskBtn");
const taskList = document.getElementById("taskList");

function createTaskElement(taskText) {
 const listItem = document.createElement("li");
 listItem.textContent = taskText;

 // Add click listener to toggle 'completed' class
 listItem.addEventListener("click", function() {
 listItem.classList.toggle("completed");
 });

 // Create Delete button
 const deleteBtn = document.createElement("button");
 deleteBtn.textContent = "Delete";
 deleteBtn.addEventListener("click", function(event) {
 event.stopPropagation(); // Prevent listItem click event from firing
 listItem.remove(); // Remove the li element
 });

 listItem.appendChild(deleteBtn);
 return listItem;
}

addTaskBtn.addEventListener("click", function() {
 const taskText = taskInput.value.trim();

 if (taskText !== "") {
 const newListItem = createTaskElement(taskText);
 taskList.appendChild(newListItem);
 taskInput.value = "";
 }
});

Example 5 (Optional): Persisting Tasks with Local Storage

AI-Generated Code (Expected):

Modify the To-Do List JavaScript to save and load tasks from the browser's Local Storage.

1. When a task is added, completed, or deleted, save the current list of tasks to
 Local Storage.
2. When the page loads, load tasks from Local Storage and display them.

Each task should be stored as an object with `text` and `completed` properties.

// script.js (further updated)
const taskInput = document.getElementById("taskInput");
const addTaskBtn = document.getElementById("addTaskBtn");
const taskList = document.getElementById("taskList");

// --- Local Storage Functions ---
function saveTasks() {
 const tasks = [];
 taskList.querySelectorAll("li").forEach(listItem => {
 tasks.push({
 text: listItem.textContent.replace("Delete", "").trim(),
 // Remove 'Delete' text
 completed: listItem.classList.contains("completed")
 });
 });
 localStorage.setItem("todoTasks", JSON.stringify(tasks));
}

function loadTasks() {
 const storedTasks = localStorage.getItem("todoTasks");
 if (storedTasks) {
 const tasks = JSON.parse(storedTasks);
 tasks.forEach(task => {
 const newListItem = createTaskElement(task.text);
 if (task.completed) {
 newListItem.classList.add("completed");
 }
 taskList.appendChild(newListItem);
 });
 }
}

// --- Task Creation and Event Handling ---
function createTaskElement(taskData) {
 const listItem = document.createElement("li");
 // Handle if taskData is just text or an object
 const taskText = typeof taskData === 'object' ? taskData.text : taskData;

Analysis: This advanced example demonstrates the use of localStorage to
persist data, JSON.stringify() and JSON.parse() for data serialisation, and
integrating saving and loading into the existing event handlers. It also shows how to
handle the EventListener.

 listItem.textContent = taskText;

 // Add click listener to toggle 'completed' class
 listItem.addEventListener("click", function() {
 listItem.classList.toggle("completed");
 saveTasks(); // Save after status change
 });

 // Create Delete button
 const deleteBtn = document.createElement("button");
 deleteBtn.textContent = "Delete";
 deleteBtn.addEventListener("click", function(event) {
 event.stopPropagation();
 listItem.remove();
 saveTasks(); // Save after deletion
 });

 listItem.appendChild(deleteBtn);
 return listItem;
}

addTaskBtn.addEventListener("click", function() {
 const taskText = taskInput.value.trim();

 if (taskText !== "") {
 const newListItem = createTaskElement(taskText);
 taskList.appendChild(newListItem);
 taskInput.value = "";
 saveTasks(); // Save after adding new task
 }
});

// Load tasks when the page first loads
document.addEventListener("DOMContentLoaded", loadTasks);

JavaScript, once confined to the browser, has broken free and now powers a vast ecosystem
of applications beyond the web. This chapter will introduce you to Node.js, which enables
JavaScript to run on servers, and touch upon frameworks that allow JavaScript to be used in
desktop applications. You'll learn how to prompt AI to generate code for these
environments, expanding your reach as a JavaScript developer.

Node.js is a JavaScript runtime environment built on top of Chrome's V8 JavaScript engine.
It allows you to run JavaScript code outside of a web browser, typically for server-side
applications, command-line tools, and backend services. This means you can use a single
language (JavaScript) for both your frontend (browser-based) and backend (server-based)
development, a concept known as "full-stack JavaScript."

To deploy your Node.js application, you'll typically need a server. Here's a simplified guide:

1. Choose a Hosting Provider: Select a hosting provider that supports Node.js. Popular
options include Heroku, Amazon Web Services (AWS), Google Cloud, DigitalOcean,
and Vultr.

2. Set up a Server:

For VPS (Virtual Private Server): You'll get full control over the server. Install
Node.js using a package manager like apt (on Debian/Ubuntu) or yum (on
CentOS/RHEL). Example:

sudo apt update
sudo apt install nodejs npm

Chapter 14: Beyond the Browser -
JavaScript on the Server and Desktop
JavaScript Everywhere: Node.js and Desktop
Applications

Node.js: JavaScript on the Server

Setting up Node.js on an External Server

For Platform-as-a-Service (PaaS): Services like Heroku simplify deployment. You
typically push your code to their platform, and they handle the server setup.

3. Transfer Your Code: Use tools like git or scp to transfer your Node.js
application files to the server.

4. Install Dependencies: Navigate to your application directory on the server and run:

npm install

This command installs all the necessary packages listed in your package.json file.

5. Start Your Application: Use a process manager like pm2 or forever to keep
your Node.js application running even if the server is restarted. Example:

npm install -g pm2
pm2 start your_app.js

If you're limited to a shared hosting environment without direct Bash access, using Node.js
can be tricky, but not impossible. Here are a few strategies:

1. Check for Node.js Support: Some shared hosting providers offer limited Node.js
support through their control panel (e.g., cPanel). Look for options to run Node.js
applications.

2. Use a Pre-built Application: If your hosting provider allows it, deploy a pre-built
Node.js application (such as a simple Express server) via FTP or their file manager.
Then, configure it through the available control panel settings.

3. Consider Serverless Functions: If shared hosting is a must, explore serverless
functions (like AWS Lambda or Netlify Functions). These allow you to run JavaScript
code on the server without needing to manage the server itself. You can trigger these
functions via HTTP requests from your frontend.

JavaScript isn't just for web servers; it can also be used to create desktop applications.
Frameworks like Electron and NW.js allow you to build cross-platform desktop apps using
web technologies (HTML, CSS, JavaScript).

1. Electron: Utilises Chromium and Node.js to develop desktop applications. Popular for
apps like VS Code, Slack, and Discord.

2. NW.js (Node-Webkit): Another framework for building desktop apps with web

Working with Shared Hosting (No Bash Access)

Desktop Applications with JavaScript

technologies.

To distribute your desktop application, you'll need to bundle it into a stand-alone executable.
Both Electron and NW.js provide tools for this:

Electron: Use electron-packager or electron-builder to package your
app for different platforms (Windows, macOS, Linux).
NW.js: Provides a command-line tool to bundle your application into a single
executable.

These tools package your application code, the Node.js runtime, and the necessary
Chromium files into a single, distributable package.

Now, let's see how you can use AI to generate code for Node.js and desktop applications.

Goal: Generate a basic HTTP server using Node.js and Express.

Prompt:

Generate a Node.js application using Express that listens on port 3000
and responds with "Hello, World!" to all requests. Include comments to
explain each step.

AI-Generated Code (Expected):

const express = require('express'); // Import the Express library
const app = express(); // Create an Express application
const port = 3000; // Define the port number

// Define a route that responds with "Hello, World!" for all requests.
 app.get('/', (req, res) => {
 res.send('Hello, World!');
});

// Start the server and listen on the specified port.
 app.listen(port, () => {
 console.log(`Server listening at http://localhost:${port}`);
});

Bundling for Stand-alone Apps

Prompting AI for Server and Desktop Code

Example 1: Creating a Simple Node.js Server

Goal: Generate a basic Electron application that displays "Hello, World!" in a window.

Prompt:

AI-Generated Code (Expected):

const { app, BrowserWindow } = require('electron');

function createWindow () {
 // Create a new browser window
 let win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 });

 // Load the HTML file
 win.loadFile('index.html');
}

// When the app is ready, create the window
app.on('ready', createWindow);

// HTML file (index.html):
// <!DOCTYPE html>
// <html>
// <head>
// <title>Hello, World!</title>
// </head>
// <body>
// <h1>Hello, World!</h1>
// </body>
// </html>

Summary

JavaScript's versatility extends far beyond the browser. With Node.js, you can build powerful
server-side applications, and with frameworks like Electron, you can create cross-platform
desktop apps. By leveraging AI to generate code for these environments, you can
significantly expand your capabilities as a JavaScript developer.

Generate a basic Electron application that creates a window and displays
"Hello, World!" in the window. Include comments to explain each step.

Example 2: Building a Simple Desktop App with Electron

Congratulations! You have completed your journey through "Prompting for Code." This is a
beginning, not an end. This book has equipped you with the foundational knowledge and
practical skills to effectively leverage AI in your JavaScript development. You've learned to
communicate with AI, generate code, refine it, build applications, and even explore
JavaScript beyond the browser. However, the world of AI and software development is
constantly evolving, and your journey as a developer is an ongoing one.

This final chapter will guide you on how to continue your learning, stay updated with the
latest advancements, and further integrate AI into your development workflow.

The landscape of AI tools and programming languages changes rapidly. To remain effective
and competitive, continuous learning is essential.

1. Follow AI/ML News and Blogs: Subscribe to reputable newsletters, blogs, and news
sources that cover AI, machine learning, and software development. Key sources
include:

Google AI Blog: For research and applications from Google.
OpenAI Blog: For updates on GPT models and other AI research.
Towards Data Science (Medium): A popular platform for articles on AI, ML, and
data science.
Hacker News: For general tech news and discussions.

2. Experiment with New AI Tools: Don't be afraid to try out new AI code generation tools
as they emerge. Each tool may have its strengths and weaknesses, and
experimentation will help you determine what works best for your specific needs.

3. Participate in Online Communities: Join developer communities on platforms such as

Chapter 15: The Journey Continues - Next
Steps in AI-Assisted Development
Your Path Forward: Continuous Learning and
Exploration

Staying Updated in a Rapidly Evolving Field

Stack Overflow, GitHub, Reddit (e.g., r/learnjavascript, r/MachineLearning,
r/promptengineering), and Discord. These communities are excellent for asking
questions, sharing knowledge, and staying informed.

4. Read Documentation and Research Papers: For a deeper understanding, delve into
the official documentation of AI models and tools, and if you're inclined, explore relevant
research papers.

While this book focused on Vanilla JavaScript, the ecosystem is vast. Consider exploring:

1. Frameworks and Libraries:

React, Angular, Vue.js: Popular frontend frameworks for building complex user
interfaces.
Next.js, Nuxt.js: Frameworks built on React/Vue for server-side rendering and
static site generation.
Express.js: A minimalist web framework for Node.js, ideal for building APIs.

2. TypeScript: A superset of JavaScript that adds static typing, which can significantly
improve code quality and maintainability, especially in larger projects.

3. Testing Frameworks: Learn how to write automated tests for your JavaScript code
using frameworks like Jest, Mocha, or Cypress.

4. Build Tools: Familiarise yourself with tools such as Webpack, Rollup, or Vite for
bundling and optimising your JavaScript applications.

As you gain experience, you can employ more sophisticated strategies for AI collaboration:

1. Fine-tuning Models (for advanced users): If you have specific coding patterns or
domain-specific knowledge, you might explore fine-tuning smaller AI models on your
codebase to generate even more tailored and accurate code.

2. Automated Code Review with AI: Utilise AI tools to automatically review your code for
potential bugs, security vulnerabilities, and style inconsistencies.

3. AI for Documentation and Explanations: Leverage AI to generate documentation for
your code or to explain complex algorithms and concepts.

4. AI for Code Migration and Refactoring: Utilise AI to aid in migrating legacy

Deepening Your JavaScript Knowledge

Advanced AI-Assisted Development Strategies

codebases to newer versions of JavaScript or to refactor existing code for improved
performance and readability.

Remember the ethical considerations discussed in Chapter 12. As AI tools become
increasingly powerful, your role as a developer also grows. Always strive to:

Be Transparent: Disclose when AI has been used to generate code, especially in
collaborative environments.
Prioritise Security: Never deploy AI-generated code without a thorough security review
and testing.
Promote Fairness and Inclusivity: Be mindful of potential biases in AI models and
work towards creating equitable and accessible software.

The journey of learning to code with AI is an exciting one. You are at the forefront of a
technological shift that is redefining how software is built. Embrace the power of AI as your
intelligent assistant, but never forget that your creativity, critical thinking, and problem-solving
skills remain indispensable. Continue to learn, experiment, and build, and you will
undoubtedly shape the future of software development.

Happy Prompting, and Happy Coding!

References:

Node.js Official Website
React Official Website
Angular Official Website
Vue.js Official Website
TypeScript Official Website
Jest Testing Framework

The Ethical Developer

Conclusion: The Future is Collaborative

https://nodejs.org/
https://react.dev/
https://angular.io/
https://vuejs.org/
https://www.typescriptlang.org/
https://jestjs.io/

